How do Recent Machine Learning Advances Impact the Data Visualization Research Agenda?

Timo Ropinski (Ulm, organizer),
Daniel Archambault (Swansea), Min Chen (Oxford),
Ross Maciejewski (Arizona), Klaus Mueller (Stony Brook),
Alexandru Telea (Groningen), Martin Wattenberg (Google)

The Space of Machine Learning

Min Chen, University of Oxford
No “Political” Statement
Machine Learning is

- A scientific subject
- A useful technology for some algorithm/software development
- Potentially a powerful paradigm for simulating cognitive functions
- But most machine learning processes are NP-processes
Four Levels of Visualization

1. Disseminative Level
 - This is “a”!

2. Observational Level
 - “a”, “b”, “c”, … what, when, where?

3. Analytical Level
 - Are “a”, “b”, “c” related? Why?

4. Model-developmental Level
 - How does “a” lead to “b”?

Scientifically, ...

The Space of All Functions

- Quantum computing?
- Bio-computing?
- Cognition?
- Social computing?

Universal Turing Machine (with infinite tape length)
Scientifically, ...
Scientifically, ...
My Observations

- Algorithms: Some by humans, some by ML, some combined.

- Visually exploring the space of ML.
 - model space, template space, parameter space, data space, result space, and their relationships.

- Visually supporting software engineering with ML.
 - understanding, quality assurance, post-deployment monitoring.
Use ML in Visualization
to model and simulate
perceptual and cognitive functions
that we use during visualization
VIS2017 is a milestone for VIS+ML

- **Sunday**: Keynote 2, Keynote 3, VDS panel, best paper
- **Monday**: Vis+ML Tutorial, VADL 2017 workshop
- **Tuesday**: VAST best paper
- **Wednesday**: VAST Session ML1
- **Thursday**: VIS panel, VAST ML2, InfoVis Text+ML
- **Friday**: VAST ML3
Machine Learning and Visualization

Past

Present

Future