Visual Multiplexing

M. Chen¹, S. Walton¹, K. Berger², J. Thiyagalingam³, B. Duffy⁴, H. Fang¹,₅, C. Holloway⁶, and A. E. Trefethen¹

¹ University of Oxford, UK
² INRIA Rennes, France
³ MathWorks, UK
⁴ United Technologies Research Center, Ireland
⁵ International Seismology Centre, UK
⁶ St Vincent’s Hospital, Sydney, Australia
Outline

- Motivation
- Multiplexing in communication
- Categories of visual multiplexing
- Evidence: How did it work in visualization?
- Evidence: Do humans have such abilities?
- Evidence: Does it mathematically make sense?
- Conclusion
Initial Motivation

- In 2012-2013, we were working on summarizing video data in *Cardiovascular Magnetic Resonance* (CMR) Imaging.
- Many different data fields were derived from the video data.
Temporal Multi-field Data

Table 2: Different fields and attributes associated with CMR imagery data.

<table>
<thead>
<tr>
<th>Field/Attribute</th>
<th>Data Type (per point)</th>
<th>Symbol</th>
<th>Layer</th>
<th>Visual Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cine CMR Video</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. key frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar time-series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{cme}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>video loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tagged CMR Video</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. key frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar time series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{key}(x,y,Frm))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Color-mapped CMR Video</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. key frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time-varying RGB values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{cmap}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometrical Attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Estimated Motion Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a. magnitude series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vector time series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{mag}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primitive graphics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>animated arrows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b. direction series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d-vector time series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{dir}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4c. average vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d-vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{avg}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d. average magnitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{mag}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4e. magnitude range (min, avg, max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{mag}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4f. magnitude histogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k-bin scalar histogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{mag}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Track Path (TP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a. path length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{path}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Straight Line Path (SLP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a. line length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>displacement vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{SLP}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Strain (Circumferential/Radial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a-7g similar to 4a-4g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Intensity Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a. line profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar time-series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{int}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnable glyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glyphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Gradient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a-9g similar to 4a-4g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Spatial Salience (Variance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a. average spatial salience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{sp}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derived field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heatmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Temporal Salience (Variance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{temp}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derived field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heatmap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Gabor Filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vector time series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{gabor}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primitive graphics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>animated arrows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Edge Detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. average edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar time-series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{edge}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derived field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Ghost Boundary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{ghost}(x,y,t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derived field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>emulated contours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Related Work

- Overlaying Methodologies
 - Map overlay
 - Multi-field visualization
 - Comparative visualization

- Cognitive sciences

- Information theory and data communication

http://learnpracticalgis.com/how-to-overlay-maps/
Multiplexing in Communication

- **Frequency Division (FDM)**

- **Time Division (TDM)**

- **Space Division (SDM)**

- **Code Division (CDM)**

References

- http://www.cse.iitk.ac.in/users/dheeraj/cs425/lec04.html
Process: Literature Studies

- Identify various solutions for multivariate, multi-layer and multi-field visualization.
- Make small cards for many successful examples of such visualization.
Process: Categorization

- Brainstorm meetings to study different ways for grouping different example cards.
- Many categorization schemes were proposed.
- Gradually evolve to a scheme with 10 categories.
Type A: Partition a Space
Type B: Partition a Time Period

- Image 1: Cloud symbol indicating rain or stormy weather.
- Image 2: Green box with "5°C" indicating temperature.
- Image 3: Blue circle with "9" possibly indicating another measure or number.
Multiplexing in Visualization

Location p can be associated with X in the source data or determined by a spatial mapping.

Perceived information may include estimated values and relationships with data conveyed by other signals.

Data objects

$X = \langle x_1, x_2, \ldots, x_k \rangle$ at p
Multiplexing in Visualization

Let \(X = \langle x_1, x_2, \ldots, x_k \rangle \) at \(p \).

The vis-encoder processes \(X \) and sends it through the vis-link (consisting of many vis-channels).

At the receiver, the vis-decoder recovers the information about \(X \) at \(p \).

The spatial domain \(D \) and the temporal domain \(T \) are involved in the process, along with other signals and noise.
Type C: Introduce Partial Occlusion
Type D: Use a ‘Hollow’ Visual Channel
Type E: Introduce Translucent Occlusion
Type F: Use an Integrated Visual Channel
Type G: Depict a Continuous Field
Type H: Shift a Visual Channel
Type I: Use Periodic Motion
Type J: Assume A Priori Knowledge (1)
Visual multiplexing is an important phenomenon in visualization. It can be utilized to create effective visual designs.
Type J: Visual Language (3)
How did it work in visualization?

(a) Robertson et al. [RFF*08]
Type B

(b) Everts et al. [EBRI09]
Type C

(c) Bair, House [BH07]
Types C, D, G

(d) Treavett, Chen [TC00]
Type D, J

(e) Collins et al. [CPC09]
Types C, E

(f) Guo et al. [GXY12]
Type E

(g) Kindlmann, Westin [KW06]
Type F

(h) Ware [War09]
Types G, J
How did it work in visualization?

(i) Chen et al. [CPL*11]
Types C, G, J

(j) Saito et al. [SMY*05]
Type C, H

(k) Drocourt et al. [DBS*11]
Type H

(l) Ware, Plumlee [WP13]
Type I

(m) Viola et al. [VFSG06]
Type E, J

(n) Correa et al. [CSC06]
Type H, J

(o) Botchen et al. [BBS*08]
Types E, G, H, J

(p) Maguire et al. [MRSS*12]
Type J
Do Humans Have such Abilities?

- **Human Vision System**
 - 130M retinal receptors
 - optical nerve: 1.2M axons
 - fovea resolution: 10K points
 - rapid eye movement

- **Memory**
 - Sensory memory
 - Short-term (working) memory
 - Long-term memory

- **Gestalt principles**

- **Other cognitive abilities**
 - Learning, Reasoning, ...

http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-orgchap16/F16-01%20Human%20eye.jpg

http://www.human-memory.net/types.html
Do Humans Have such Abilities?

- Human Vision System
 - 130M retinal receptors
 - optical nerve: 1.2M axons
 - fovea resolution: 10K points
 - rapid eye movement

- Memory
 - Sensory memory
 - Short-term (working) memory
 - Long-term memory

- Gestalt principles

- Other cognitive abilities
 - Learning, Reasoning, ...

- Type A: Partition a space
 - Type B: Partition a time period
 - Type C: Partial occlusion
 - Type D: ‘Hollow’ visual channel
 - Type E: Translucent occlusion
 - Type F: Integrated visual channel
 - Type G: Depict a continuous field
 - Type H: Shift a visual channel
 - Type I: Periodic motion
 - Type J: Knowledge
Do Humans Have such Abilities?

- **Human Vision System**
 - 130M retinal receptors
 - optical nerve: 1.2M axons
 - fovea resolution: 10K points
 - rapid eye movement

- **Memory**
 - Sensory memory
 - Short-term (working) memory
 - Long-term memory

- **Gestalt principles**

- **Other cognitive abilities**
 - Learning, Reasoning, ...

Types of Visual Categorization

- **Type A:** Partition a space
- **Type B:** Partition a time period
- **Type C:** Partial occlusion
- **Type D:** ‘Hollow’ visual channel
- **Type E:** Translucent occlusion
- **Type F:** Integrated visual channel
- **Type G:** Depict a continuous field
- **Type H:** Shift a visual channel
- **Type I:** Periodic motion
- **Type J:** Knowledge
Do Humans Have such Abilities?

- **Human Vision System**
 - 130M retinal receptors
 - optical nerve: 1.2M axons
 - fovea resolution: 10K points
 - rapid eye movement

- **Memory**
 - Sensory memory
 - Short-term (working) memory
 - Long-term memory

- **Gestalt principles**

- **Other cognitive abilities**
 - Learning, Reasoning, ...

- **Types**
 - Type A: Partition a space
 - Type B: Partition a time period
 - Type C: Partial occlusion
 - Type D: ‘Hollow’ visual channel
 - Type E: Translucent occlusion
 - Type F: Integrated visual channel
 - Type G: Depict a continuous field
 - Type H: Shift a visual channel
 - Type I: Periodic motion
 - Type J: Knowledge
Do Humans Have such Abilities?

- **Human Vision System**
 - 130M retinal receptors
 - optical nerve: 1.2M axons
 - fovea resolution: 10K points
 - rapid eye movement

- **Memory**
 - Sensory memory
 - Short-term (working) memory
 - Long-term memory

- **Gestalt principles**

- **Other cognitive abilities**
 - Learning, Reasoning, ...

Types:
- Type A: Partition a space
- Type B: Partition a time period
- Type C: Partial occlusion
- Type D: ‘Hollow’ visual channel
- Type E: Translucent occlusion
- Type F: Integrated visual channel
- Type G: Depict a continuous field
- Type H: Shift a visual channel
- Type I: Periodic motion
- Type J: Knowledge
Does it Mathematically Make Sense?

- A puzzle in [Chen & Jänicke, 2010]

Diagram:

- Data Space
- Visualization Space
- Display Space

- Data Space Entropy: H
- Visualization Capacity (Visualization Space Entropy): $V(G)$
- Display Space Capacity: D

$V(G) << D <= 1$
An Illustrative Example

DSU = 0.0093

\[DSU = 2 \times 0.0093 - \varepsilon \]

Probability of no collision or minor collision (at 4 or fewer location) = 0.997
Making Use of Underutilized Display Space Capacity

DSU = 0.93%

DSU ≈ 1.83%

DSU ≈ 3.72%

DSU ≈ 7.44%

DSU ≈ 14%
How about When Every Pixel is Used?

Data Space

Visualization Space

Display Space

Data Space Entropy H

Visualization Capacity (Visualization Space Entropy) $V(G)$

Display Space Capacity D

$V(G) \ll 1$
Conclusions

Observation:
- A common phenomenon in visualization.
- Humans can decode many types of visual multiplexing effortlessly.
- Support comparative and multivariate visualization.
- An intrinsic way to access underutilized display bandwidth.
- A priori knowledge can help.

Uses of this categorization:
- Assist visualization designers in exploring different visual encoding schemes systematically.
- Recognize and utilize users’ knowledge.
- Explore opportunities to create new knowledge.